601 research outputs found

    Generalization of short coherent control pulses: extension to arbitrary rotations

    Full text link
    We generalize the problem of the coherent control of small quantum systems to the case where the quantum bit (qubit) is subject to a fully general rotation. Following the ideas developed in Pasini et al (2008 Phys. Rev. A 77, 032315), the systematic expansion in the shortness of the pulse is extended to the case where the pulse acts on the qubit as a general rotation around an axis of rotation varying in time. The leading and the next-leading corrections are computed. For certain pulses we prove that the general rotation does not improve on the simpler rotation with fixed axis.Comment: 6 pages, no figures; published versio

    High Order Coherent Control Sequences of Finite-Width Pulses

    Full text link
    The performance of sequences of designed pulses of finite length τ\tau is analyzed for a bath of spins and it is compared with that of sequences of ideal, instantaneous pulses. The degree of the design of the pulse strongly affects the performance of the sequences. Non-equidistant, adapted sequences of pulses, which equal instantaneous ones up to O(τ3)\mathcal{O}(\tau^3), outperform equidistant or concatenated sequences. Moreover, they do so at low energy cost which grows only logarithmically with the number of pulses, in contrast to standard pulses with linear growth.Comment: 6 pages, 5 figures, new figures, published versio

    Symmetry-Enhanced Performance of Dynamical Decoupling

    Get PDF
    We consider a system with general decoherence and a quadratic dynamical decoupling sequence (QDD) for the coherence control of a qubit coupled to a bath of spins. We investigate the influence of the geometry and of the initial conditions of the bath on the performance of the sequence. The overall performance is quantified by a distance norm dd. It is expected that dd scales with TT, the total duration of the sequence, as Tmin{Nx,Nz}+1T^{\min \{N_x,N_z\}+1}, where NxN_x and NzN_z are the number of pulses of the outer and of the inner sequence, respectively. We show both numerically and analytically that the state of the bath can boost the performance of QDD under certain conditions: The scaling of QDD for a given number of pulses can be enhanced by a factor of 2 if the bath is prepared in a highly symmetric state and if the system Hamiltonian is SU(2) invariant.Comment: 9 pages, 4 figures, published versio

    Optimized Dynamical Decoupling for Time Dependent Hamiltonians

    Full text link
    The validity of optimized dynamical decoupling (DD) is extended to analytically time dependent Hamiltonians. As long as an expansion in time is possible the time dependence of the initial Hamiltonian does not affect the efficiency of optimized dynamical decoupling (UDD, Uhrig DD). This extension provides the analytic basis for (i) applying UDD to effective Hamiltonians in time dependent reference frames, for instance in the interaction picture of fast modes and for (ii) its application in hierarchical DD schemes with π\pi pulses about two perpendicular axes in spin space. to suppress general decoherence, i.e., longitudinal relaxation and dephasing.Comment: 5 pages, no figure

    Magnetic Properties of (VO)_2P_2O_7 from Frustrated Interchain Coupling

    Full text link
    Neutron-scattering experiments on (VO)_2P_2O_7 reveal both a gapped magnon dispersion and an unexpected, low-lying second mode. The proximity and intensity of these modes suggest a frustrated coupling between the alternating spin chains. We deduce the minimal model containing such a frustration, and show that it gives an excellent account of the magnon dispersion, static susceptibility and electron spin resonance absorption. We consider two-magnon states which bind due to frustration, and demonstrate that these may provide a consistent explanation for the second mode.Comment: RevTeX, 5 pages, 6 figures, compressed from first versio

    The fate of orbitons coupled to phonons

    Full text link
    The key feature of an orbital wave or orbiton is a significant dispersion, which arises from exchange interactions between orbitals on distinct sites. We study the effect of a coupling between orbitons and phonons in one dimension using continuous unitary transformations (CUTs). Already for intermediate values of the coupling, the orbiton band width is strongly reduced and the spectral density is dominated by an orbiton-phonon continuum. However, we find sharp features within the continuum and an orbiton-phonon anti-bound state above. Both show a significant dispersion and should be observable experimentally.Comment: 7 pages, 7 figures; strongly enlarged, comprehensive revised version according to the referees' suggestions, in pres

    Thermodynamics of Adiabatically Loaded Cold Bosons in the Mott Insulating Phase of One-Dimensional Optical Lattices

    Get PDF
    In this work we give a consistent picture of the thermodynamic properties of bosons in the Mott insulating phase when loaded adiabatically into one-dimensional optical lattices. We find a crucial dependence of the temperature in the optical lattice on the doping level of the Mott insulator. In the undoped case, the temperature is of the order of the large onsite Hubbard interaction. In contrast, at a finite doping level the temperature jumps almost immediately to the order of the small hopping parameter. These two situations are investigated on the one hand by considering limiting cases like the atomic limit and the case of free fermions. On the other hand, they are examined using a quasi-particle conserving continuous unitary transformation extended by an approximate thermodynamics for hardcore particles.Comment: 10 pages, 6 figure
    corecore